Obsah:
- Krok 1: Přehled BMG160:
- Krok 2: Co potřebujete..
- Krok 3: Připojení hardwaru:
- Krok 4: Měření 3osého gyroskopu Arduino Kód:
- Krok 5: Aplikace:
Video: Rozhraní 3osého gyroskopického senzoru BMG160 s Arduino Nano: 5 kroků
2024 Autor: John Day | [email protected]. Naposledy změněno: 2024-01-30 08:19
V dnešním světě více než polovina mládeže a dětí má ráda hry a všichni, kteří ji mají rádi, fascinováni technickými aspekty hraní her vědí, jak důležité je v této oblasti snímání pohybu. Byli jsme také ohromeni stejnou věcí a jen aby to bylo na deskách, napadlo nás pracovat na gyroskopickém senzoru, který dokáže měřit úhlovou rychlost jakéhokoli objektu. Senzorem, který jsme vzali k řešení tohoto úkolu, je BMG160. BMG160 je 16bitový, digitální, triaxiální gyroskopický senzor, který dokáže měřit úhlovou rychlost ve třech kolmých rozměrech místnosti.
V tomto tutoriálu předvedeme fungování BMG160 s Arduino Nano.
Hardware, který budete pro tento účel potřebovat, je následující:
1. BMG160
2. Arduino Nano
3. Kabel I2C
4. I2C štít pro Arduino Nano
Krok 1: Přehled BMG160:
Nejprve bychom vás chtěli seznámit se základními funkcemi senzorového modulu BMG160 a komunikačním protokolem, na kterém funguje.
BMG160 je v podstatě 16bitový, digitální, triaxiální gyroskopický senzor, který dokáže měřit úhlové rychlosti. Je schopen vypočítat úhlové rychlosti ve třech kolmých rozměrech místnosti, osách x, y a z, a poskytovat odpovídající výstupní signály. Může komunikovat s deskou Raspberry Pi pomocí komunikačního protokolu I2C. Tento konkrétní modul je navržen tak, aby splňoval požadavky na spotřebitelské aplikace i průmyslové účely.
Komunikační protokol, na kterém senzor funguje, je I2C. I2C je zkratka pro interintegrovaný obvod. Jedná se o komunikační protokol, ve kterém probíhá komunikace prostřednictvím linek SDA (sériová data) a SCL (sériové hodiny). Umožňuje připojení více zařízení současně. Je to jeden z nejjednodušších a nejefektivnějších komunikačních protokolů.
Krok 2: Co potřebujete..
Materiály, které potřebujeme k dosažení našeho cíle, zahrnují následující hardwarové komponenty:
1. BMG160
2. Arduino Nano
3. Kabel I2C
4. I2C štít pro Arduino Nano
Krok 3: Připojení hardwaru:
Sekce zapojení hardwaru v zásadě vysvětluje zapojení kabelů požadovaná mezi senzorem a Arduinem. Zajištění správného připojení je základní nutností při práci na jakémkoli systému pro požadovaný výstup. Požadovaná připojení jsou tedy následující:
BMG160 bude fungovat přes I2C. Zde je příklad schématu zapojení, které ukazuje, jak zapojit jednotlivá rozhraní senzoru.
Po vybalení je deska nakonfigurována pro rozhraní I2C, proto doporučujeme tuto přípojku použít, pokud jste jinak agnostik.
Vše, co potřebujete, jsou čtyři dráty! Jsou vyžadována pouze čtyři připojení Vcc, Gnd, SCL a SDA piny a ty jsou spojeny pomocí kabelu I2C.
Tato spojení jsou ukázána na obrázcích výše.
Krok 4: Měření 3osého gyroskopu Arduino Kód:
Začněme nyní arduino kódem.
Při používání senzorového modulu s arduino jsme zahrnuli knihovnu Wire.h. Knihovna „Wire“obsahuje funkce, které usnadňují komunikaci i2c mezi senzorem a deskou arduino.
Celý arduino kód je pro pohodlí uživatele uveden níže:
#include // Adresa BMG160 I2C je 0x68 (104)
#define Addr 0x68
neplatné nastavení ()
{
// Inicializujte komunikaci I2C jako MASTER
Wire.begin ();
// Inicializace sériové komunikace, nastavení přenosové rychlosti = 9600
Serial.begin (9600);
// Spusťte přenos I2C
Wire.beginTransmission (Addr);
// Vyberte Registr rozsahu
Wire.write (0x0F);
// Konfigurace plného rozsahu rozsahu 2000 dps
Wire.write (0x80);
// Zastavte přenos I2C
Wire.endTransmission ();
// Spusťte přenos I2C
Wire.beginTransmission (Addr);
// Vyberte registr šířky pásma
Wire.write (0x10);
// Nastavit šířku pásma = 200 Hz
Wire.write (0x04);
// Zastavte přenos I2C
Wire.endTransmission ();
zpoždění (300);
}
prázdná smyčka ()
{
nepodepsaná int data [6];
// Spusťte přenos I2C
Wire.beginTransmission (Addr);
// Vyberte datový registr gyrometru
Wire.write (0x02);
// Zastavte přenos I2C
Wire.endTransmission ();
// Vyžádejte si 6 bajtů dat
Wire.requestFrom (Addr, 6);
// Přečíst 6 bajtů dat
// xGyro lsb, xGyro msb, yGyro lsb, yGyro msb, zGyro lsb, zGyro msb
pokud (Wire.available () == 6)
{
data [0] = Wire.read ();
data [1] = Wire.read ();
data [2] = Wire.read ();
data [3] = Wire.read ();
data [4] = Wire.read ();
data [5] = Wire.read ();
}
zpoždění (300);
// Převod dat
int xGyro = ((data [1] * 256) + data [0]);
int yGyro = ((data [3] * 256) + data [2]);
int zGyro = ((data [5] * 256) + data [4]);
// Výstup dat na sériový monitor
Serial.print ("Osa otáčení X:");
Serial.println (xGyro); Serial.print ("Osa Y rotace:");
Serial.println (yGyro); Serial.print ("Osa Z rotace:");
Serial.println (zGyro);
zpoždění (500);
}
Krok 5: Aplikace:
BMG160 má různorodý počet aplikací v zařízeních, jako jsou mobilní telefony, zařízení rozhraní člověk -stroj. Tento senzorový modul byl navržen tak, aby splňoval požadavky spotřebitelských aplikací, jako je stabilizace obrazu (DSC a fotoaparát-telefon), herní a polohovací zařízení. Používá se také v systémech, které vyžadují rozpoznávání gest, a v systémech používaných ve vnitřní navigaci.
Doporučuje:
Začínáme s rozhraním senzoru I2C ?? - Rozhraní vašeho MMA8451 pomocí ESP32s: 8 kroků
Začínáme s rozhraním senzoru I2C ?? - Rozhraní vašeho MMA8451 pomocí ESP32s: V tomto tutoriálu se dozvíte vše o tom, jak spustit, připojit a získat zařízení I2C (Accelerometer) pracující s ovladačem (Arduino, ESP32, ESP8266, ESP12 NodeMCU)
Rozhraní 3osého gyroskopického senzoru BMG160 s Raspberry Pi: 5 kroků
Rozhraní 3osého gyroskopického senzoru BMG160 s Raspberry Pi: V dnešním světě více než polovina mládeže a dětí má ráda hry a všichni, kteří ji mají rádi, fascinováni technickými aspekty hraní ví, jak důležité je snímání pohybu v této doméně. Byli jsme také ohromeni stejnou věcí
Rozhraní 3osého gyroskopického senzoru BMG160 s částicí: 5 kroků
Rozhraní 3osého gyroskopického senzoru BMG160 s částicí: V dnešním světě více než polovina mládeže a dětí má ráda hry a všichni, kteří ji mají rádi, fascinováni technickými aspekty hraní her vědí, jak důležité je snímání pohybu. tuto doménu. Byli jsme také ohromeni stejnou věcí
Rozhraní teplotního senzoru (LM35) s ATmega32 a LCD displejem - Automatické ovládání ventilátoru: 6 kroků
Rozhraní teplotního senzoru (LM35) s ATmega32 a LCD displejem | Automatické ovládání ventilátoru: Rozhraní teplotního senzoru (LM35) s ATmega32 a LCD displejem
Metody detekce vodní hladiny Arduino pomocí ultrazvukového senzoru a Funduino vodního senzoru: 4 kroky
Metody detekce hladiny vody Arduino pomocí ultrazvukového senzoru a Funduino senzoru vody: V tomto projektu vám ukážu, jak vytvořit levný detektor vody pomocí dvou metod: 1. Ultrazvukový senzor (HC-SR04) .2. Senzor vody Funduino