Obsah:
- Krok 1: Požadovaný hardware:
- Krok 2: Připojení hardwaru:
- Krok 3: Kód pro měření teploty:
- Krok 4: Aplikace:
Video: Měření teploty pomocí MCP9803 a Raspberry Pi: 4 kroky
2024 Autor: John Day | [email protected]. Naposledy změněno: 2024-01-30 08:21
MCP9803 je 2vodičový vysoce přesný teplotní senzor. Jsou provedeny s uživatelsky programovatelnými registry, které usnadňují aplikace snímání teploty. Tento senzor je vhodný pro vysoce sofistikovaný vícezónový systém monitorování teploty.
V tomto tutoriálu je ukázáno propojení senzorového modulu MCP9803 s malinovým pi a bylo také ukázáno jeho programování pomocí jazyka Java. Ke čtení teplotních hodnot jsme použili malinu pi s adaptérem I2C. Tento adaptér I2C umožňuje snadné a spolehlivější připojení k modulu senzoru.
Krok 1: Požadovaný hardware:
Materiály, které potřebujeme k dosažení našeho cíle, zahrnují následující hardwarové komponenty:
1. MCP9803
2. Malinová pí
3. Kabel I2C
4. I2C štít pro malinovou pí
5. Ethernetový kabel
Krok 2: Připojení hardwaru:
Sekce zapojení hardwaru v zásadě vysvětluje zapojení kabelů požadovaná mezi snímačem a malinovým pi. Zajištění správného připojení je základní nutností při práci na jakémkoli systému pro požadovaný výstup. Požadovaná připojení jsou tedy následující:
MCP9803 bude fungovat přes I2C. Zde je příklad schématu zapojení, které ukazuje, jak zapojit jednotlivá rozhraní senzoru.
Po vybalení je deska nakonfigurována pro rozhraní I2C, proto doporučujeme tuto přípojku použít, pokud jste jinak agnostik.
Vše, co potřebujete, jsou čtyři dráty! Jsou vyžadována pouze čtyři připojení Vcc, Gnd, SCL a SDA piny a ty jsou spojeny pomocí kabelu I2C.
Tato spojení jsou ukázána na obrázcích výše.
Krok 3: Kód pro měření teploty:
Výhodou použití raspberry pi je, že vám poskytuje flexibilitu programovacího jazyka, ve kterém chcete desku programovat, abyste s ní mohli propojit senzor. S využitím této výhody této desky zde předvádíme programování v Javě. Java kód pro MCP9803 lze stáhnout z naší komunity Github, kterou je Dcube Store.
Stejně jako pro snadnost uživatelů vysvětlujeme kód také zde:
Jako první krok kódování si musíte stáhnout knihovnu pi4j v případě Java, protože tato knihovna podporuje funkce použité v kódu. Chcete -li si stáhnout knihovnu, můžete navštívit následující odkaz:
pi4j.com/install.html
Pracovní java kód pro tento senzor můžete zkopírovat také zde:
importovat com.pi4j.io.i2c. I2CBus;
importovat com.pi4j.io.i2c. I2CDevice;
importovat com.pi4j.io.i2c. I2CFactory;
import java.io. IOException; veřejná třída MCP9803
{
public static void main (String args ) vyvolá výjimku
{
// Vytvoření sběrnice I2C
Sběrnice I2CBus = I2CFactory.getInstance (I2CBus. BUS_1);
// Získejte zařízení I2C, adresa ICP MCP9803 je 0x48 (72)
I2CDevice zařízení = Bus.getDevice (0x48);
// Vyberte konfigurační registr
// Režim nepřetržité konverze, zapnutí, režim komparátoru, 12bitové rozlišení
device.write (0x01, (byte) 0x60);
Thread.sleep (500);
// Přečíst 2 bajty dat z adresy 0x00 (0)
// temp msb, temp lsb
byte data = nový byte [2];
device.read (0x00, data, 0, 2);
// Převod dat na 12bitové
int temp = ((data [0] & 0xFF) * 256 + (data [1] & 0xF0)) / 16;
pokud (teplota> 2047)
{
teplota -= 4096;
}
dvojnásobek cTemp = teplota * 0,0625;
zdvojnásobit fTemp = cTemp * 1,8 + 32;
// Výstup dat na obrazovku
System.out.printf ("Teplota ve stupních Celsia je: %.2f C %n", cTemp);
System.out.printf ("Teplota ve stupních Fahrenheita je: %.2f F %n", fTemp);
}
}
Knihovna, která usnadňuje i2c komunikaci mezi senzorem a deskou, je pi4j, její různé balíčky I2CBus, I2CDevice a I2CFactory pomáhají navázat spojení.
importovat com.pi4j.io.i2c. I2CBus;
importovat com.pi4j.io.i2c. I2CDevice;
importovat com.pi4j.io.i2c. I2CFactory;
import java.io. IOException;
Funkce write () a read () se používají k zápisu některých konkrétních příkazů do senzoru, aby fungoval v určitém režimu a čtení výstupu senzoru.
Výstup snímače je také zobrazen na obrázku výše.
Krok 4: Aplikace:
MCP9803 lze použít v široké řadě zařízení, mezi něž patří osobní počítač a periferie, pevné disky, různé zábavní systémy, kancelářské systémy a systémy datové komunikace. Tento senzor lze začlenit do různých sofistikovaných systémů.
Doporučuje:
Měření teploty pomocí AD7416ARZ a Raspberry Pi: 4 kroky
Měření teploty pomocí AD7416ARZ a Raspberry Pi: AD7416ARZ je 10bitové teplotní čidlo se čtyřmi jednokanálovými analogově digitální převodníky a integrovaným teplotním čidlem. K teplotnímu senzoru na částech lze přistupovat prostřednictvím kanálů multiplexeru. Tato vysoce přesná teplota
Měření teploty pomocí MCP9803 a Arduino Nano: 4 kroky
Měření teploty pomocí MCP9803 a Arduino Nano: MCP9803 je 2vodičový vysoce přesný teplotní senzor. Jsou provedeny s uživatelsky programovatelnými registry, které usnadňují aplikace snímání teploty. Tento senzor je vhodný pro vysoce sofistikovaný vícezónový systém monitorování teploty. V
Měření teploty pomocí MCP9803 a fotonu částic: 4 kroky
Měření teploty pomocí MCP9803 a částicového fotonu: MCP9803 je 2vodičový vysoce přesný teplotní senzor. Jsou provedeny s uživatelsky programovatelnými registry, které usnadňují aplikace snímání teploty. Tento senzor je vhodný pro vysoce sofistikovaný vícezónový systém monitorování teploty. V
Měření teploty pomocí STS21 a Raspberry Pi: 4 kroky
Měření teploty pomocí STS21 a Raspberry Pi: Digitální teplotní senzor STS21 nabízí vynikající výkon a prostorově úspornou stopu. Poskytuje kalibrované linearizované signály v digitálním formátu I2C. Výroba tohoto senzoru je založena na technologii CMOSens, která připisuje vynikající
Měření vlhkosti a teploty pomocí HTS221 a Raspberry Pi: 4 kroky
Měření vlhkosti a teploty pomocí HTS221 a Raspberry Pi: HTS221 je ultra kompaktní kapacitní digitální senzor pro relativní vlhkost a teplotu. Obsahuje snímací prvek a integrovaný obvod specifický pro smíšený signál (ASIC), který poskytuje informace o měření prostřednictvím digitálního sériového